
Addressing Delayed Feedback for Continuous Training with
Neural Networks in CTR prediction

Sofia Ira Ktena
Twitter

London, UK
siraktena@twitter.com

Aly Tejani
Twitter

London, UK
atejani@twitter.com

Lucas Theis
Twitter

London, UK
ltheis@twitter.com

Pranay Kumar Myana
Twitter

London, UK
pmyana@twitter.com

Deepak Dilipkumar
Twitter

San Francisco, USA
ddilipkumar@twitter.com

Ferenc Huszar
Twitter

London, UK
fhuszar@twitter.com

Steven Yoo
Twitter

San Francisco, USA
syoo@twitter.com

Wenzhe Shi
Twitter

London, UK
wshi@twitter.com

ABSTRACT
One of the challenges in display advertising is that the distribution
of features and click through rate (CTR) can exhibit large shifts over
time due to seasonality, changes to ad campaigns and several other
factors. The predominant strategy to keep up with these shifts is
to train predictive models continuously, on fresh data, in order to
prevent them from becoming stale. However, in many ad systems
positive labels are only observed after a possibly long and random
delay. These delayed labels pose a challenge to data freshness in
continuous training: fresh data may not have complete label in-
formation at the time they are ingested by the training algorithm.
Naive strategies which consider any data point a negative example
until a positive label becomes available tend to underestimate CTR,
resulting in inferior user experience and suboptimal performance
for advertisers. The focus of this paper is to identify the best combi-
nation of loss functions and models that enable large-scale learning
from a continuous stream of data in the presence of delayed labels.
In this work, we compare five different loss functions, three of
them applied to delayed feedback problem for the first time. We
benchmark their performance in offline settings on both public and
proprietary datasets in conjunction with shallow and deep model
architectures. We also discuss the engineering cost associated with
implementing each loss function in a production environment. Fi-
nally, we carried out online experiments with the top performing
methods, in order to validate their performance in a continuous
training scheme. While training on 668 million in-house data points
with neural networks offline, our proposed methods outperform

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys ’19, September 16–20, 2019, Copenhagen, Denmark
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

previous state-of-the-art by 3% RCE. During online experiments,
we observed 55% RPMq gain against naive log loss.

CCS CONCEPTS
• Display advertising; • Continuous training; • Neural net-
works;

KEYWORDS
Recommender Systems; Delayed Feedback; Fake Negatives

ACM Reference Format:
Sofia Ira Ktena, Aly Tejani, Lucas Theis, Pranay Kumar Myana, Deepak
Dilipkumar, Ferenc Huszar, Steven Yoo, and Wenzhe Shi. 2019. Addressing
Delayed Feedback for Continuous Training with Neural Networks in CTR
prediction. In RecSys ’19: ACM Conference on Recommender Systems, Septem-
ber 16–20, 2019, Copenhagen, Denmark. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Many advertisers would choose not to pay for an impression unless
a user takes a predefined action, such as clicking on their ad or visit-
ing their website. This issue is well-known in the field of advertising
and models such as cost-per-click (CPC) and cost-per-conversion
(CPA) were introduced to allow advertisers to only pay for prede-
fined engagements. These performance-dependent payment models
require the estimation of the probability that an impression will
lead to a specific engagement. One of the challenges in display
advertising is that feature and click through rate (CTR) distribu-
tions can experience big shifts due to the time of the day, special
events, new campaigns and other factors. Figures 1 and 2 illustrate
these changes through time. To address this problem, Twitter’s ads
prediction models are constantly trained online on fresh data. The
simplest system we can build takes a continuous stream of data and
updates the model as soon as new data arrives (see Figure 3).

A major challenge encountered in the above scenario is that of
delayed feedback of user actions. Some engagements, like a click

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Ktena et al.

on the ad or an MRC view1 of the ad video, may occur with a time
delay of 1 minute, 1 hour or even 1 day after the ad is displayed. The
challenge that arises then is whether to wait for a fixed timewindow
before assigning a label to ad impressions, and subsequently train
on the data, or rather decide on the label based on certain heuristics.
Each of these approaches comes with its own drawbacks, with the
main downsides of the former being that themodel can become stale
while waiting and the additional infrastructure cost of maintaining
a data cache. In the latter case, training entails falsely labeling
examples as negatives, because the user has not yet engaged with
the ad, resulting in more negative examples than in the actual data
distribution. It is also unclear what the ideal length of the time
window would be, in order to find a trade-off between the delay
in model training and the fake negative (FN) rate (i.e. incorrectly
labeling examples as negative due to the window being too short).

Internally, empirical results show that even a 5-minute delay to
model updates can prove to be very damaging for this domain in
terms of performance. Each method that attempts to address the
aforementioned problem makes certain assumptions which are tied
to their corresponding limitations. In the naive continuous learn-
ing approach, small batches of training samples are immediately
ingested during the training procedure with negative labels, hence
the model is always up-to-date, even in the case of a severe feature
distribution shift across time. Because there is no need to store
additional snapshots of examples that have not been clicked yet,
this approach technically allows us to wait for an infinite amount
of time until a positive label is observed. Then, it can be imme-
diately introduced to the model, as shown in Figure 3. The main
drawback of this approach is that all samples are initially labeled
as negatives, even though the user might eventually engage with
them. Alternatively, if the data samples remain unlabeled until
an engagement takes place and the probability of engagement is
considered to be dependent on the time elapsed since impression
as in [3], regular snapshots of the data need to be collected and
stored to capture the engagement delay distribution. Although the
assumption of time-dependence is valid, this would lead to a large
increase in infrastructure cost given that data points need to be
stored multiple times (once for each snapshot) to train the model
in batch mode, causing the training data to grow overtime without
aggressive down-sampling. Last but not least, a fixed time window
like the one proposed in [13] would allow us to obtain most of the
positives before training, but would still lead to FN labels for those
engagements that fall outside the fixed window. Consequently, the
problem of handling false negatives would still persist with the
additional risk of the model becoming stale.

In this work we devise a model that predicts the probability that
a video ad will be clicked by a particular user on the Twitter plat-
form, i.e. its output corresponds to the probability of click (pCTR).
Through this endeavour, we compare two different classes of model
architectures and five different loss functions offline on two differ-
ent datasets. Subsequently, we pick the top performing architecture
and loss functions and evaluate them through online experiments.
The first model architecture is a simple logistic regression model
that has been extensively used in the industry of display adver-
tising [3, 13] due to its simplicity, good performance and ease of

1http://mediaratingcouncil.org

0 2 4 6 8 10 12 14 16 18 20 22 24
Hours elapsed

0

2

4

6

8

10

12

14

%
 o

f t
ra

ffi
c

w
ith

 n
ew

 c
am

pa
ig

n

Figure 1: Percentage of traffic with new campaign IDs for
each hour following a reference day.

ingesting and handling new training examples with online training.
The second model employs a wide & deep architecture [5] and
was introduced to tackle the complexity and diversity of features
used in recommender systems. The five loss functions we test are
log loss, FN weighted loss, FN calibration, positive unlabeled loss
[7, 8] as well as delayed feedback loss [3]. Among these, the log
loss has been commonly used for CTR prediction [14]. Continuous
learning is used during the online experiments, which we consider
to offer the best trade-off in terms of infrastructure cost, ease of
productionization and has the significant advantage that the model
is constantly trained on fresh data.

While continuous or online training via online gradient descent
is widely used [12] in shallow (linear or kernel-based) models,
there is relatively little work on continuous learning of deep neural
networks [21]. This is particularly challenging, due to the fact that
the objective function is non-convex and alternative approaches,
like a hedging strategy [24], have been proposed to tackle this
problem. To the best of our knowledge, this is the first time a deep
learning model is used to estimate pCTR in display advertising
while addressing the issue of delayed feedback. Given that online
training is challenging to adopt with deep neural networks, this
work aims to benchmark and suggest feasible solutions to the issue
of delayed feedback without additional engineering cost. Three of
the loss functions under consideration, positive unlabeled (PU), FN
weighted and FN calibration, are applied for the first time on this
problem, while the last two are based on importance sampling. Our
results indicate that good performance with linear models and small
datasets does not necessary translate to equivalent performance
with deep models. Indicatively, the delayed feedback loss leads to
the best RCE using a linear model on the public dataset, but is
outperformed by all proposed loss functions with a deep model on
Twitter data offline (2.99% RCE increase). The efficacy of the loss
functions also changes with the amount of data available. We hope
that this paper can serve as a guideline for which loss function to
use when training deep learning models in a continuous fashion
for the task of ad-click prediction.

http://mediaratingcouncil.org

Addressing Delayed Feedback for Continuous Training in CTR prediction RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

0 10 20 30 40 50 60 70
Hours

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Fe
at

ur
e

Va
lu

e

Figure 2: Distribution of a continuous feature’s value across
3 days.

2 RELATEDWORK
In order to ensure that a model is constantly trained on a fresh
stream of data, some examples are falsely labeled as negatives or
remain unlabeled. As soon as the user engages with the ad, the
same data point will be presented to the model with a positive label.
In [13] they claim to use a time window that is sufficiently long to
significantly reduce the bias between the empirical CTR and the
ground truth (arising from a fraction of impressions falsely being
labeled as negative). Even though most approaches disregard the
time delay information that is available (i.e. time that has elapsed
since the impression and time until the user engages with the ad),
some of them leverage time-delay by jointly training a delay model
alongwith a CPC or CPAmodel [3, 28]. In the following sections, we
describe five different methods, which constitute potential solutions
to the FN problem. We further discuss their individual challenges.

2.1 Importance Sampling
The cross-entropy of a model with respect to a data distribution p
is given by:

L(θ) = −Ep [log fθ (y|x)] = −
∑
x,y

p(x, y) log fθ (y|x) (1)

where x are the features related to a particular request (user
and ad related), y is a binary label representing engagement and
fθ is the model that tries to estimate p. As previously discussed,
in online training scenarios, samples are introduced as negative
examples until a positive label is observed. That leads the model
to observe a biased distribution, b, instead of the actual data distri-
bution. Hence, we cannot sample from p but only have access to
samples from a different distribution b. With the application of an
appropriate weighting scheme we can obtain an unbiased estimate
of the expectation in eq. 1 by using:

Ep [log fθ (y|x)] = Eb
[p(x, y)
b(x, y) log fθ (y|x)

]
(2)

Training
service

Training data
stream

Model manager

Snapshots every x
minutes

Prediction
service

Streams model
updates

Prediction
responses

Prediction
requests

Figure 3: Continuous training framework.

The weights w(x, y) = p(x,y)
b(x,y) correspond to the importance

weights and aim to correct for the fact that the averaging is per-
formed over a different distribution. Using samples from a different,
biased distribution b, the expectation in eq. 2 can be estimated with:

1
N

∑
n

w(xn , yn) log fθ (yn |xn)

This method of using samples from one distribution to estimate
the expectation with respect to another distribution is called im-
portance sampling. Importance sampling has been extensively used
in different contexts, including counterfactual analysis, and in [2]
authors discuss the assumptions involved and how this technique
can be applied in computational advertising to estimate the counter-
factual expectation of any quantity. The biggest challenge of using
importance sampling in this setting is that we need an estimate of
the weightsw(x, y). From this point onward, we use fθ (x) to refer
to fθ (y = 1|x) for brevity.

2.2 Inverse Propensity Weighting
Inverse propensity weighting has been widely used in causal in-
ference, where certain samples within the population might be
underrepresented. The discrepancy between the actual population
and the sample can be adjusted for by using appropriate weights
on the individual samples in the estimator [1]. When the sam-
pling probability is known, then the inverse of this probability is
used to weight the observations. The propensity score, denoted as
p(x) = P(T = 1|X = x), is the probability that a sample will be
assigned a particular treatment given a set of covariates. Under
the assumption that the treatment is not randomly assigned, the
counterfactual is the equivalent estimation as if all samples in the
population could be assigned either treatment with equal probabil-
ity. A similar approach can be used in the context of click-through
rate prediction where treatment is the equivalent of an ad being
assigned a ground truth label. One requirement that needs to be
taken into account when applying this technique in any problem
is that the propensity weights need to be estimated by a separate,
reference model.

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Ktena et al.

2.3 Positive - Unlabeled Learning
Another set of approaches does not explicitly identify data with
negative labels and only learns from positive (P) and unlabeled (U)
examples, unlike the traditional classification setting where both
positive and negative examples are available. This setting arises
when it is impossible or very costly to obtain labeled examples, e.g.
in text classification [10], molecular biology [9] but has also been
applied for outlier detection [25] and time series classification [23].
In this scenario, the available training data consists of an incom-
plete, but randomly sampled, set of positive examples and a set
of unlabeled examples, which can either be positive or negative,
leading to a need for a different training procedure. A key assump-
tion about the training data is that they are drawn randomly from
p(x, y, s), and for each tuple < x, y, s > that is drawn, only < x, s >
is recorded. Here s is the observed label and y is the actual label,
which might not have occurred yet. Along with this, it is assumed
that labeled positive examples are chosen completely randomly
from all positive examples, i.e. p(s = 1|x, y = 1) = p(s = 1|y = 1).

In this case, a classifier д(x) = p(s = 1|x) can be first trained to
estimate the probability that an example is labeled positive (s = 1)
given that its original label is positive (y = 1) [9], since

p(s = 1|y = 1) = 1
nP

∑
x∈P

д(x)

where nP is the cardinality of positives P. In the next step, each
unlabeled example can be treated as a combination of a positive
example with weight proportional to p(y = 1|x, s = 0) and a nega-
tive example with a complementary weight 1 − p(y = 1|x, s = 0),
while all positive examples have a unit weight. This weight can be
expressed as:

p(y = 1|x, s = 0) = 1 − p(s = 1|y = 1)
p(s = 1|y = 1)

p(s = 1|x)
1 − p(s = 1|x)

Finally, a classifier can be trained on the available data using
these weights and the standard training procedure.

Previously, [19] learned the conditional probability of observing
a positive label given the input by performing logistic regression
and optimizing for the sum of squared weights of the linear function
and the sum of weighted logit losses. In this setting, unlabeled
samples have a unit weight, while positive samples are weighted by
the ratio nU /nP where U is the set of unlabeled examples. The PU
problem has also been addressed by aggregating classifiers that are
trained to discriminate between P data and a random subsample of
U data [22].

In [8] and [7], du Plessis et al. were the first to propose an unbi-
ased non-convex risk estimator and analyzed the excess risk when
the class prior is estimated from the data. The classification risk in
a standard binary classification setting is given by:

R̂PN (fθ) = p(y = 1)Ep(x |y=1)
[
l(fθ (x))

]
+

p(y = 0)Ep(x |y=0)
[
l(1 − fθ (x))

]
where l is the loss function. Since p(x) = p(y = 1)p(x|y =

1) + p(y = 0)p(x|y = 0), the last term can be expressed as:

p(y = 0)Ep(x |y=0)
[
l(1 − fθ (x))

]
=

Ep(x)
[
l(1 − fθ (x))

]
− p(y = 1)Ep(x |y=1)

[
l(1 − fθ (x))

]
Therefore, the classification risk can be approximated with the

following expression:

R̂PU (fθ) = p(y = 1)Ep(x |y=1)
[
l(fθ (x))

]
−

p(y = 1)Ep(x |y=1)
[
l(1 − fθ (x))

]
+ Ep(x)

[
l(1 − fθ (x))

]
(3)

where p(x) corresponds to the marginal distribution over all
unlabeled examples. According to [18], this unbiased risk estimator
can yield negative empirical risks if the model trained is too flexible,
which makes this loss function more difficult to optimize with
neural networks and prone to overfitting.

2.4 Delayed Feedback Models
The approach presented by [3] models a CPA and takes into account
the time that has elapsed since the ad click and does not involve a
matching window. In this context the issue of delayed feedback is
rather addressed as follows: training samples are only labeled as
positive if a positive label has actually been observed and are other-
wise considered unlabeled, similarly to the PU approach. In the case
of modeling post-click attribution, it means that negative labels
cannot occur because a conversion can happen at any time in the
future. Most approaches that learn only from positive and unlabeled
examples [9, 19] assume that the probability of having a positive
example with a missing label is constant. According to [3], how-
ever, recent clicks are less likely to be assigned true labels because
not enough time has elapsed, i.e. the probability of positive exam-
ples is time-dependent. Therefore, they use a second model that
strongly resembles survival time analysis models [15] to capture
the expected delay between click and conversion. This is separate
to the model that predicts whether the user will eventually convert,
but the two models are trained jointly. In this method, the random
variable Y ∈ {0, 1} indicates whether a conversion has already
occurred, while a separate random variable C ∈ {0, 1} indicates
whether the user will eventually convert. Once the two models are
trained, only the one that predicts the probability of conversion,
i.e. P(c = 1|x), is preserved, while the model of conversion delay
P(d |x, c = 1) is discarded. A standard logistic regression model rep-
resents the probability of click, while an exponential (non-negative)
distribution is assumed for delay, i.e.:

P(d |x, c = 1) = λ(x) exp(−λ(x)d) (4)

Hence, y = 0 can occur under two different circumstances: ei-
ther the time elapsed e is shorter than the time to conversion d ,
i.e. e < d , or the user will never convert, i.e. c = 0. Even though
this model was applied in a cost-per-conversion model, it is also
applicable in the cost-per-click model that is the main focus of
this paper. Fig. 4 illustrates that the time-to-click also follows an
exponential distribution, which renders this model an appropri-
ate solution. As an extension of the model presented in [3], [28]
suggested a non-parametric delayed feedback model (NoDeF) to

Addressing Delayed Feedback for Continuous Training in CTR prediction RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

0 50 100 150 200 250 300
Time-to-click since impression (in mins)

0

50000

100000

150000

200000

250000

300000

Nu
m

be
r o

f c
lic

ks

Figure 4: Distribution of time-to-click delay for training ads
(longer than 5mins). This corresponds to the uncensored dis-
tribution after correcting for the CDF of the censoring dis-
tribution.

capture the time delay without assuming any parametric distribu-
tions, like exponential or Weibull. This model assumes a hidden
variable for each sample, which indicates whether this action will
eventually lead to conversion. For the parameter estimation, the
expectation-maximization (EM) algorithm [6] is used. Adopting
these approaches would, however, require estimating the time delay
with a separate model and significantly increase the infrastructure
cost and complexity to put such a system into production.

2.5 Delayed Bandits
Delayed feedback has been extensively considered in the context of
Markov Decision Processes (MDPs) [16, 27], but their application be-
comes more challenging for unbounded delays. In [26] authors pro-
pose discrete-time stochastic multiarmed bandit models to address
the problem of long delays with possibly censored feedback, i.e.
feedback that is not observable. They cover two different versions
of these models: the uncensored model which allows conversions to
be observed after an arbitrarily long delay, and the censored model
which imposes a window restriction ofm time steps following the
action, after which a conversion cannot be observed anymore. At
each round the agent receives a reward that corresponds to the
number of observed conversions at time t . However, unlike the pre-
vious approach, these models operate under the assumption that
the distribution delay is known. They consider this to be a valid
assumption since the distribution can be estimated from historical
data and also claim that delay distribution can be estimated in an
online fashion at no additional cost, under the assumption that it is
shared by all actions.

3 PROPOSED APPROACH
In this work we adopt a continuous training scheme, which suggests
that we can potentially wait infinite time since the ad impression
until a positive engagement is eventually observed. Historically,
this has been dealt with by ingesting all samples with a negative
label until a positive engagement is recorded by the user. Hence,
the biased data distribution, which is the observed distribution,

contains all samples from the actual data distribution labeled as
negatives. Accordingly, the positive examples in the biased distribu-
tion correspond to all positives from the original data distribution.

3.1 Model Architecture
This section describes the architectural details for the models under
consideration.

3.1.1 Logistic regression. We use a standard logistic regression
model, which has been used very extensively in the field of display
advertising [3, 13]:

fθ (x) =
1

1 + exp(−wc · x)
= σ (wc · x)

σ (·) corresponds to the sigmoid function, while the input x is a
sparse representation of thousands of features related to the users
and the ad candidates for a particular request.

3.1.2 Wide-and-deep model. This deep model consists of a wide
component, which corresponds to a generalized linear model, and
a deep component, which corresponds to a standard feed-forward
neural network. The wide component handles both raw input fea-
tures and transformed, e.g. cross-product features, adding non-
linearity to the generalized linear model. The deep component
converts high-dimensional sparse features to an embedding vec-
tor, transforming categorical features to a dense, low-dimensional
representation.

Similarly to the previous model, features include user features,
contextual features and ads features. The model’s prediction for
CTR is given by:

fθ (x) = σ (wT
wide [x,ϕ(x)] +w

T
deepα

(lf) + b)
wwide corresponds to theweights of thewide component,wdeep

the weights of the deep component, ϕ(x) the cross-product trans-
formations and α (lf) the final layer activations of the deep branch.

3.2 Loss Functions
3.2.1 Delayed feedback loss. In this version of the loss function,
an exponential distribution is assumed for the time delay and this
model is jointly trained with either the logistic regression or the
deep model. Assuming that λ(x) = exp(wd · x) and wc the pa-
rameters of the pCTR model, we optimize for the regularized log
likelihood with respect to the parameters θ and wd :

arд min
θ,wd

LDF (θ ,wd) + α(∥θ ∥22 + ∥wd ∥22)

where α is the regularization parameter and LDF is:

LDF (θ ,wd) = −
∑
x,y=1

log fθ (x) + log λ(x) − λ(x)d

−
∑
x,y=0

log[1 − fθ (x) + fθ (x) exp(−λ(x)e)] (5)

fθ (x) corresponds to the output of the pCTR model, d corre-
sponds to the time-to-click for a positive example, while e repre-
sents the time elapsed since the ad impression. This loss function
can be computed in a more numerically stable way as follows:

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Ktena et al.

LDF (θ ,wd) = −
∑
x,y

log fθ (x) −
∑
x,y=1

wd · x − λ(x)d

−
∑
x,y=0

log[exp(−fθ (x)) + exp(−λ(x)e)]

3.2.2 Positive-unlabeled loss. In this section, we consider using the
PU loss under the FN setting by treating all negative samples in the
biased training data as unlabeled. According to eq. 3, the following
loss function can be derived:

LPU (θ) = −
∑
x,y=1

[log fθ (x) − log(1− fθ (x))] −
∑
x,y=0

log(1− fθ (x))

(6)
Empirically this could be perceived as applying the traditional

log loss for both positive and negative samples. In addition, a step
in the opposite direction of negative gradients is made whenever a
positive example is observed. This assumption is reasonable given
the fact that for every positive sample there have been parameter
updates based on gradients from a fake negative sample.

3.2.3 Fake negative weighted. This loss relies on importance sam-
pling. In our training setting, samples are labeled as negatives
and ingested to the training pipeline, and then duplicated with a
positive label as soon as a user engagement takes place. To for-
mulate this loss function, we rely on the following assumptions:
b(x|y = 0) = p(x) and b(x|y = 1) = p(x|y = 1), where b is the bi-
ased observed distribution and p is the actual data distribution. We
also know that b(y = 0) = 1

1+p(y=1) , since all samples are initially
labeled as negative.

The loss function in (1) can be written as:

−
∑
x,y

p(y = 1|x) log fθ (x) + p(y = 0|x) log fθ (y = 0|x) =

−
∑
x,y

b(y = 1|x)p(y = 1|x)
b(y = 1|x) log fθ (x)+

b(y = 0|x)p(y = 0|x)
b(y = 0|x) log fθ (y = 0|x) (7)

The probability of observing a positive user engagement in the
biased distribution is:

b(y = 1|x) = b(y = 1)b(x|y = 1)
b(y = 1)b(x|y = 1) + b(y = 0)b(x|y = 0)

which, using the above assumptions and assigning w(x) B
1

1+p(y=1 |x) , can be expressed as:

b(y = 1|x) = w(x)p(y = 1)p(x|y = 1)
w(x)p(y = 1)p(x|y = 1) +w(x)p(x) =

p(y = 1|x)p(x)
p(y = 1|x)p(x) + p(x) =

p(y = 1|x)
1 + p(y = 1|x) (8)

Similarly, the probability that the user will not engage is the
following:

b(y = 0|x) = 1 − b(y = 1|x) = 1
1 + p(y = 1|x) (9)

By replacing (8) and (9) in eq. 7, we obtain the following expres-
sion:

LI S (θ) = −
∑
x,y

b(y = 1|x)(1 + p(y = 1|x)) log fθ (x)+

b(y = 0|x)p(y = 0|x)(1 + p(y = 1|x)) log fθ (y = 0|x) (10)

Therefore, we can weigh positive samples with (1 + p(y = 1|x))
and negative samples with (1 − p(y = 1|x)) · (1 + p(y = 1|x)). Since
we don’t directly have access to p, we can replace it with the model
estimate fθ , as long as fθ converges to p, which we prove in the
following paragraphs.

Relying on (8) and (9), and by replacing p with fθ in the impor-
tance weights, (10) can be rewritten as:

LI S (θ) = −
∑
x,y

p(y = 1|x)
1 + p(y = 1|x)

[
(1 + fθ (x))

]
log fθ (x)+

1
1 + p(y = 1|x)

[
(1 − fθ (x))(1 + fθ (x))

]
log((1 − fθ (x))

The terms in
[
·
]
brackets are not taken into account in the

gradient calculation of the loss with respect to the input. Finally,
the gradient of LI S (θ) with respect to fθ can be written as:

∂LI S
∂ fθ

= − p(y = 1|x)
1 + p(y = 1|x)

1 + fθ (x)
fθ (x)

+
1 + fθ (x)

1 + p(y = 1|x)

=
(1 + fθ (x))(fθ (x) − p(y = 1|x))

(1 + p(y = 1|x))fθ (x)
(11)

Note that when ∂LI S /∂ fθ = 0, then fθ (x) = p(y = 1|x),
i.e. fθ (x) converges to p(y = 1|x), as long as fθ (x) > 0. When
fθ (x) > p(y = 1|x), ∂LI S /∂ fθ > 0, and when fθ (x) < p(y = 1|x),
∂LI S /∂ fθ < 0, for p(y = 1|x) ∈ (0, 1]. This indicates that the FN
weighted loss leads to fθ (x) = p(y = 1|x) and the gradients always
point towards the right direction.

3.2.4 Fake negative calibration. In this approach the model esti-
mates the biased distribution b and, then, the following transfor-
mation is used after solving eq. 8 for p(y = 1|x):

p(y = 1|x) = b(y = 1|x)
1 − b(y = 1|x)

This is always a valid distribution, since for every positive in
the biased distribution a FN is observed, i.e. b(y = 1|x) ≤ 0.5 and
p(y = 1|x) ≤ 1. For the sake of brevity, we refer to this method as
FN calibration.

4 EXPERIMENTS
4.1 Setup
4.1.1 Offline metrics. In order to compare the differentmodel archi-
tectures and loss functions under consideration, we first performed
offline experiments. The offline experiments were used to validate
that the proposed loss functions are appropriate for the problem of
CTR prediction and two different datasets, one in-house and one

Addressing Delayed Feedback for Continuous Training in CTR prediction RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

public dataset, were used for training and testing the models. In the
offline setting the metrics that we focus on and report in this paper
include log loss on the evaluation set (which does not contain fake
negatives), relative cross entropy (RCE) and area under precision-
recall curve (PR-AUC). RCE corresponds to the improvement of a
prediction relative to the straw man, or the naive prediction, mea-
sured in cross entropy (CE). The naive prediction corresponds to
the case that does not take into account the user and ad features,
e.g. it always predicts the average CTR of the training set. Suppose
the average CE of the naive prediction is CEnaive and average CE
of the prediction to be evaluated is CEpred , then RCE is defined
as (CEnaive −CEpred) ∗ 100/CEnaive . Note that the lower the CE
the better the quality of the predictions, so the higher the RCE. The
benefit of using RCE is that we can obtain a confident estimate of
whether the model is under or over performing the naive prediction.
PR-AUC is a more commonly used metric and is more sensitive
than AUC on skewed data.

4.1.2 Online metrics. The model and loss functions with the most
promising offline results were further evaluated in an online set-
ting, since the desired application is continuous training. The online
setting reflects the actual performance that determines which ap-
proach is the most suitable for the problem of delayed feedback. The
evaluation is, then, performed on a holdback evaluation dataset of
Twitter data to compare performance between the ‘control‘ method-
ology and the ‘treatment‘. The fake negatives have been removed
from this holdback dataset by waiting up to 9 hours following the
end of the evaluation date for an engagement label. Two keymetrics
are reported in this setting: pooled relative cross entropy (pooled
RCE) and revenue per thousand requests (RPMq) [20]. Pooled RCE
is used to address a fair comparison of RCE between control and
experiment, since each of the two models is verified on different
traffic, and is an indicator of how well a model will generalize by
evaluating it on pooled traffic. RPMq represents revenue per 1000
ad requests. Increasing user engagement by showing higher quality
ads can cause RPMq to increase, but RPMq can also go up by just
serving more ads per request, irrespective of their quality. There-
fore, higher RPMq is desirable but this metric needs to be considered
along with CTR, since a high RPMq with low CTR could potentially
hurt user experience and cause negative long-term effects.

4.1.3 Hyperparameters. The hyperparameters used for the offline
experiments are: stochastic gradient descent (SGD) optimizer, learn-
ing rate 0.02; decay rate 0.000001; batch size 128; the learning rate
used for the delayed feedback loss is 0.005 and the l2 regularisation
parameter for the delayed feedback model is 2. We use a mix of
categorical and continuous features which are discretized into a
fixed number of bins. The deep part of the wide-and-deep model
consists of 4 layers with sizes [400, 300, 200, 100] and a leaky recti-
fied linear unit (ReLU) is adopted as an activation function for the
intermediate layers. The weights are initialized using Glorot [11]
initialization. The same hyperparameters were used to initialize
the online models.

Logistic regression - Criteo data
Loss function Loss RCE PR-AUC
Log loss 0.3963 17.26 0.5081
Delayed feedback loss 0.3970 17.32 0.5080
PU loss 0.4065 15.10 0.5048
FN weighted 0.4008 16.30 0.5037
FN calibration 0.3961 17.29 0.4983

Table 1: Offline results with the linear model on public
Criteo data. Bold indicates top-performing method.

4.2 Data
4.2.1 Public data. The public dataset used to evaluate the different
loss functions offline was provided by Criteo [3]. It should be men-
tioned that this dataset corresponds to conversions after a click has
occurred, so the time delay is generally longer in comparison to the
CTR prediction. Each sample is described by a set of hashed cate-
gorical features and a few continuous features. The total number of
training data amounts to 15.5 million examples, while the evalua-
tion set consists of 3.5 million samples. In order to create a dataset
with fake negatives from the original public dataset the following
process is carried out: the latest conversion time or click time is
used as snapshot time and a fake negative example is introduced at
the time of click for all positive examples. The original dataset is
used to evaluate logistic and delayed feedback loss functions with
a logistic regression model. The version of the dataset that includes
the FN examples at the time of click is used to evaluate the PU, FN
weighted and FN calibration loss functions.

4.2.2 Offline Twitter data. For the experiments based on in-house
data, we train on 4 days of data offline. The evaluation is performed
on the following day’s data. Given that only a small fraction of the
ads served to the users are actually clicked, data label imbalance
poses a particular challenge. In our training setup the negative
examples are downsampled to 5% of the original dataset to address
this imbalance problem and a higher weight is adopted for negative
samples in the loss function to account for this modification. After
these steps the total number of training data amounts to 668 million
video ads, while the test data amounts to 7 million ads. For the
evaluation dataset, a positive label is assigned to a sample if an
engagement takes place up to 9 hours following the impression
time. Otherwise, samples are assigned a negative label. Both positive
and negative examples are, subsequently, downsampled to 5% of
their original size. In order to obtain the time elapsed and time-to-
click information, a snapshot of the data is captured at the end of
each date. Hence, for samples that an engagement has not been
observed yet a negative label is assigned and the time elapsed from
the impression time until the snapshot time is added as a feature.
For samples with observed engagement prior to the snapshot time,
apart from the time elapsed, the difference between engagement
time and impression time is recorded as the time-to-click. These
time features are only used for the estimation of the time delay
model which is required by the delayed feedback loss. It is worth
mentioning that, since most fake negatives are scrubbed from this
derived dataset, the positive / negative ratio is eventually higher
than before.

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Ktena et al.

Logistic regression - Twitter data
Loss function Loss RCE PR-AUC
Log loss 0.6087 5.48 0.5596
Delayed feedback loss 0.5725 10.59 0.5725
PU loss 0.5754 10.65 0.5690
FN weighted 0.5713 11.30 0.5730
FN calibration 0.5641∗ 12.41∗ 0.5813∗

Table 2: Offline results with the logistic regression model
on Twitter data. Bold indicates top-performing method and
(*) statistical significance in comparison to second-best per-
forming method.

4.2.3 Online Twitter data. In online experiments, all the models
train on a continuous data stream that is generated from impression
callback data in real time. Ad impressions are served to users and the
label for each example is decided based on current click information
(this is where the fake negatives enter the training data). Each
training example is then published to a data stream which the
model’s training service subscribes to. The continuous training
process outputs models every 10 minutes which are picked up
by the prediction service to serve online traffic. When computing
pooled RCE, we use the same data source that is used to generate
offline evaluation data, meaning that we remove fake negatives by
waiting for 9 hours before assigning labels to each ad impression.

It is important to note that each online experiment serves only 1%
of production traffic, meaning that the training traffic is dominated
by our current production model. We also compute our online
pooled RCE metric on this reference production traffic which is not
affected by any of the models, to ensure fairness by using the same
evaluation dataset for each model.

4.3 Results
4.3.1 Offline evaluation. Offline results on the Criteo dataset are
presented in Table 1. On this dataset the delayed feedback loss
yields the highest RCE (17.32), followed by the FN calibration loss
(with RCE 17.29), which is almost on par with the log loss. These
results align with the ones reported in the original paper [3], as
the evaluation loss when training with the traditional log loss is
0.3963 and for the delayed feedback loss it is 0.3970. The worst
performing loss function on the public data is PU loss, which also
showed unstable performance across different runs. These results
indicate that the delayed feedback loss is more appropriate with a
simple pCTR model (like logistic regression) and fewer training ex-
amples, while more complex models, like wide & deep require more
robust solutions that leverage importance sampling techniques in a
principled way. Additionally, the PU loss empirically seems harder
to optimize for a simple model, as the evaluation metrics fluctuate
across the different runs.

The results on Twitter data are presented in Tables 2 and 3 for
the logistic regression and the wide & deep model, respectively.
These correspond to median performance across 8 evaluations of
each model with different initialization. Overall, we can observe
that the deep learning model is performing better than the logistic
regression model for all loss functions, as expected. In terms of
RCE, the log loss performs the worst for both models while the FN

Wide & deep - Twitter data
Loss function Loss RCE PR-AUC
Log loss 0.5953 7.81 0.5872
Delayed feedback loss 0.5781 12.11 0.5781
PU loss 0.5567 13.57 0.5927
FN weighted 0.5568 13.54 0.5925
FN calibration 0.5566 13.58 0.5923

Table 3: Offline results with the wide & deep model on Twit-
ter data. Bold indicates top-performing method.

calibration loss leads to the best performance for the linear model
(with RCE 12.41 and loss 0.5641). PU loss and FN calibration perform
best for the deep model and yield almost equivalent results (RCE
13.57 and 13.58, respectively) and have very similar performance to
the FN weighted loss (RCE 13.54). Consequently, these three loss
functions are compared to the log loss in an online setting. The
delayed feedback loss performs better than the log loss for both
classes of models (RCE 10.59 vs 5.48 for the linear model, and 12.11
vs 7.81 for the deep model). PR-AUC may not vary as much as
RCE, but its difference between the top-performing methods is still
statistically significant for the linear model.

4.3.2 Online evaluation. It should be mentioned that the follow-
ing results correspond to a budget-unaware experiment, i.e. the
advertisers’ budget is not taken into account when deciding which
ads to display for a particular request, that ran for 1 week. Table 4
shows the online results for the top performing loss functions us-
ing the wide & deep model. Both FN weighted and FN calibration
yield higher RPMq compared to the traditional log loss (increases
of +55.10% and +54.37%). Equivalently, for the monetized CTR the
increase is also significant (+23.01% for FN weighted and 23.19%
for FN calibration). We observe that, despite its good offline perfor-
mance, the PU loss diverges after 2 days and report online metrics
prior to its divergence.

5 CONCLUSIONS
In this paper we have explored the issue of delayed feedback during
continuous learning of neural network models with principled loss
functions. The extensive comparison in an online and offline setting
using both in-house and public data aims to serve as a guideline
for properly addressing this issue in display advertising. Two loss
functions proposed in this work, FN weighted and FN calibration,
when employed along with a wide & deep model lead to the best
offline performance and translate to online gains. PU loss diverges
online and we aim to explore non-negative PU learning [18] to
resolve this instability in the future.

One element that needs to be taken into account for the pro-
posed loss functions is the temporal dependency of the gradients.
This means that parameter updates based on the fake negative sam-
ples precede the updates from the positive examples. In the future,
we would like to extend this work and combine the principle of
importance sampling with modeling time delay by assigning time-
dependent weights to the training samples. Particular challenges of
continuous learning like catastrophic forgetting [17] and overfitting
are outside the scope of this work, but should be further explored in

Addressing Delayed Feedback for Continuous Training in CTR prediction RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

Wide & deep - Online experiment
Loss function Pooled RCE RPMq Monetized CTR
Log loss 7.68 100.00 100.00
PU loss 12.27 137.00 118.59
FN weighted 13.39 155.10 123.01
FN calibration 13.37 154.37 123.19

Table 4: Online results with the wide & deep model and the
best performing loss functions (Twitter data). For RPMq and
monetized CTR presented results correspond to relative im-
provements with respect to the log loss. Results for PU loss
are prior to its divergence (within 2 days).

the context of display advertising. More systematic ways to tackle
dataset bias in such recommender systems and adopt exploration /
exploitation mechanisms [4] also need to be investigated.

ACKNOWLEDGMENTS
REFERENCES
[1] Peter C Austin and Elizabeth A Stuart. 2015. Moving towards best practice when

using inverse probability of treatment weighting (IPTW) using the propensity
score to estimate causal treatment effects in observational studies. Statistics in
medicine 34, 28 (2015), 3661–3679.

[2] Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max
Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. 2013.
Counterfactual reasoning and learning systems: The example of computational
advertising. The Journal of Machine Learning Research 14, 1 (2013), 3207–3260.

[3] Olivier Chapelle. 2014. Modeling delayed feedback in display advertising. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 1097–1105.

[4] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and
Ed H Chi. 2019. Top-K Off-Policy Correction for a REINFORCE Recommender
System. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining. ACM, 456–464.

[5] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems. ACM, 7–10.

[6] Arthur P Dempster, NanM Laird, and Donald B Rubin. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the royal statistical society.
Series B (methodological) (1977), 1–38.

[7] Marthinus Du Plessis, Gang Niu, and Masashi Sugiyama. 2015. Convex formula-
tion for learning from positive and unlabeled data. In International Conference on
Machine Learning. 1386–1394.

[8] Marthinus C du Plessis, Gang Niu, and Masashi Sugiyama. 2014. Analysis of
learning from positive and unlabeled data. In Advances in neural information
processing systems. 703–711.

[9] Charles Elkan and Keith Noto. 2008. Learning classifiers from only positive and
unlabeled data. In Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 213–220.

[10] Gabriel Pui Cheong Fung, X Yu Jeffrey, Hongjun Lu, and S Yu Philip. 2006. Text
classification without negative examples revisit. IEEE Transactions on Knowledge
& Data Engineering 1 (2006), 6–20.

[11] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics. 249–256.

[12] Elad Hazan, Alexander Rakhlin, and Peter L Bartlett. 2008. Adaptive online
gradient descent. In Advances in Neural Information Processing Systems. 65–72.

[13] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine
Atallah, Ralf Herbrich, Stuart Bowers, et al. 2014. Practical lessons from predicting
clicks on ads at facebook. In Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising. ACM, 1–9.

[14] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-
aware factorization machines for CTR prediction. In Proceedings of the 10th ACM
Conference on Recommender Systems. ACM, 43–50.

[15] John D Kalbfleisch and Ross L Prentice. 2011. The statistical analysis of failure
time data. Vol. 360. John Wiley & Sons.

[16] Konstantinos V Katsikopoulos and Sascha E Engelbrecht. 2003. Markov decision
processes with delays and asynchronous cost collection. IEEE transactions on

automatic control 48, 4 (2003), 568–574.
[17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume

Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences 114, 13 (2017), 3521–
3526.

[18] Ryuichi Kiryo, Gang Niu, Marthinus C du Plessis, and Masashi Sugiyama. 2017.
Positive-unlabeled learning with non-negative risk estimator. In Advances in
neural information processing systems. 1675–1685.

[19] Wee Sun Lee and Bing Liu. 2003. Learning with positive and unlabeled examples
using weighted logistic regression. In ICML, Vol. 3. 448–455.

[20] Cheng Li, Yue Lu, Qiaozhu Mei, Dong Wang, and Sandeep Pandey. 2015. Click-
through prediction for advertising in twitter timeline. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 1959–1968.

[21] Xun Liu, Wei Xue, Lei Xiao, and Bo Zhang. 2017. Pbodl: Parallel bayesian online
deep learning for click-through rate prediction in tencent advertising system.
arXiv preprint arXiv:1707.00802 (2017).

[22] Fantine Mordelet and J-P Vert. 2014. A bagging SVM to learn from positive and
unlabeled examples. Pattern Recognition Letters 37 (2014), 201–209.

[23] Minh Nhut Nguyen, Xiao-Li Li, and See-Kiong Ng. 2011. Positive unlabeled learn-
ing for time series classification. In Twenty-Second International Joint Conference
on Artificial Intelligence.

[24] Doyen Sahoo, Quang Pham, Jing Lu, and Steven CH Hoi. 2018. Online deep
learning: learning deep neural networks on the fly. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence. AAAI Press, 2660–2666.

[25] Clayton Scott and Gilles Blanchard. 2009. Novelty detection: Unlabeled data
definitely help. In Artificial Intelligence and Statistics. 464–471.

[26] Claire Vernade, Olivier Cappé, and Vianney Perchet. 2017. Stochastic Bandit
Models for Delayed Conversions. In Conference on Uncertainty in Artificial Intel-
ligence.

[27] Thomas J Walsh, Ali Nouri, Lihong Li, and Michael L Littman. 2009. Learning
and planning in environments with delayed feedback. Autonomous Agents and
Multi-Agent Systems 18, 1 (2009), 83.

[28] Yuya Yoshikawa and Yusaku Imai. 2018. A Nonparametric Delayed Feedback
Model for Conversion Rate Prediction. arXiv preprint arXiv:1802.00255 (2018).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Importance Sampling
	2.2 Inverse Propensity Weighting
	2.3 Positive - Unlabeled Learning
	2.4 Delayed Feedback Models
	2.5 Delayed Bandits

	3 Proposed Approach
	3.1 Model Architecture
	3.2 Loss Functions

	4 Experiments
	4.1 Setup
	4.2 Data
	4.3 Results

	5 Conclusions
	Acknowledgments
	References

